
42 The Delphi Magazine Issue 65

Effective Delphi
Class Engineering
Part 6: To Talk
Of Many Things
by David Baer

This article concludes my series
on effective class engineering

using Delphi. It’s been a long haul,
but I hope that you have found it to
be a worthwhile effort which has
made a difference in your develop-
ment projects.

The previous articles all focused
on a single major theme, which has
now left a few smaller tidbits lying
about unacknowledged. None of
these topics is sufficiently large to
require an entire article. So, we’ll
look at them here. You could
say that our theme this time is
miscellany.

The Big Event
Events are not restricted to compo-
nents; they are marvels of flexibility
that can be powerful assets for users
of your class.

Even the most casual Delphi user
will almost certainly have encoun-
tered and made use of events. A
typical scenario is as follows: drop
a button on a form, switch to the
Events tab in the Object Inspector,
double click the OnClick line, and
you’re in business. Delphi adds a
method to your unit into which you
may immediately place the code
that responds to the click of the
button.

But what has this to do with
those of us writing classes that
aren’t components? To under-
stand the answer, let’s break the
scenario I have described above
into two essential pieces. On the
one hand, we have the Object
Inspector, double clicking, code
generation, and so on, that is sup-
plied by Delphi’s IDE. But none of
this would be of much use if there

weren’t something at the language
level supporting it all, and that is
where events, the second piece,
come into play.

Events are essentially
procedural types. Stated another
way, an event type declaration
specifies a type of procedure with a
particular parameter list composi-
tion. For example, the most
familiar event type of them all is
declared as:

TNotifyEvent =
procedure(Sender: TObject)
of object;

The of object designation speci-
fies that the procedure is a class
method, as distinct from a
standalone procedure. Given this
type definition, you may create a
variable of that type:

MyNotifyEvent: TNotifyEvent;

You may assign a value to it in your
program code:

procedure
TSomeClass.MyNotifyHandler(
Sender: TObject);

begin
...

end;
...
MyNotifyEvent :=
MyNotifyHandler;

Although lacking the convenience
of being able to assign the event
handler code at design-time, users
of our class may still be very much
ahead of the game thanks to our
thoughtfulness.

Events are not formally part of
the Delphi object model; they’re
available to us courtesy of a lan-
guage feature. But, let’s not worry
too much about formality here or
we might deprive our class users
of a major convenience.

When should you consider
making events available for your
class users? There’s no simple
answer to that. However, consider
that, in languages without events,
there are two typical alternatives.
On the one hand, event handlers
are very much akin to callback pro-
cedures (which were commonly
employed prior to the widespread
adoption of object oriented pro-
gramming technologies). So,
there’s one answer: use them
where you might be tempted to
introduce some kind of callback
method.

In OO languages, another alter-
native would be for your class user
to create a descendant class and
override one or more methods to
introduce the ‘in-response-to’ pro-
cessing. But, without doubt, this
requires extra work on the part of
our user, whereas an event can be
tapped into with a single assign-
ment statement. Remember that
requiring a derived class in the
first place implicitly requires that
users of our class be class writers
themselves.

Those who have studied the VCL
to any degree will already know
how easily events are fired. For
those who haven’t, let’s take a brief
look at an example:

MyEvent: TNotifyEvent;
...
if Assigned(MyEvent) then
MyEvent(Self);

What’s happening with this
Assignedbusiness? We’re checking
to see if a handler method has
actually been assigned, and if one
has, we call it. We cannot simply
code:

if MyEvent <> nil then ...

Doing so would result in an objec-
tion by the compiler, which
doesn’t know that we are not
attempting to call MyEvent.

January 2001 The Delphi Magazine 43

Special Events
If you can’t find an event type that fits
your needs, it’s not a problem: just
define a new event type.

Recall that events are available
courtesy of being able to declare
procedure types in Object Pascal.
While the workhorse TNotifyEvent
will do nicely for all kinds of situa-
tions, and the VCL contains numer-
ous other type definitions for event
procedures, you may occasionally
need something new that’s not pro-
vided. This is not a problem; just
define the type yourself.

Consider some of the
specializations available:
➢ Passing a notification type into

the handler routine.
➢ Having a signal back from the

handler code that it took care of
something (and your code
doesn’t need to do anything
further).

➢ Passing in a new property set-
ting in an OnBeforeChange type
event.

➢ Allowing the handler code to
supply some optional values to
be used in preference to default
values.

The possibilities are limitless. List-
ing 1 illustrates some of them,
taken from examples in the VCL.

One convention you’ll normally
want to observe in your custom
event types is to make the first
parameter the familiar Sender:
TObject. It may seem that, in some
cases, this information is essen-
tially useless. However, remember
that users of your class may wish
to supply a single handler method
that services multiple objects,
possibly of differing class types.
Without Sender, that may prove to
be difficult.

Don’t clutter up your custom
event parameter lists with informa-
tion readily available from another
source. For example, if you have
some sort of array object which
maintains a CurrentRow property,
an OnRowChanging event might seem
thoroughly convenient having
both the current and new row
index passed in as a parameter, but
only the new row index will be
unavailable to the handler code. It
can pick up the current index from
the property.

Next, let me offer some sugges-
tions regarding event naming. First
of all, do it the way it’s done in the
VCL as far as naming the types
(TWxyzEvent) and corresponding
properties (OnWxyz). I guarantee
that you’ll be annoyed with your-
self if you don’t learn and use this
convention from the very start.

On the other hand, you might
wish to avoid another (all too
common) VCL practice. Many
events are notifications that some
object state is about to change or
has just changed. What does the
name OnChange tell you about the
timing (ie, before or after)? Would
OnChanging and OnChanged not be a
bit more informative all around? Or
how about OnBeforeChange and
OnAfterChange? Either way, it’s
immediately clear at what point
the event is being fired.

Even when you perceive that
you’ll only need one of the two
timings (before versus after), if you
settle for OnChange you will find that
adding the second timing later on
will leave you with an inconsis-
tency that looks unprofessional.
For many event types, you will sac-
rifice nothing by including a verb
tense in the name and you’ll
enhance the ability to extend event
functionality later.

There’s one more issue worth
mulling over. Delphi and the IDE
always work with event handlers
that are methods. This approach
allows event response code to be
delegated to a method of the form.

For a class (as opposed to a
component), a class method may
not be the best packaging for an
event handler. Your class user may
actually be better served with a
standalone procedure instead of a
method. Object Pascal allows us to
declare both method and stand-
alone procedure types, so the
language doesn’t force the method
solution on us. It’s definitely an
option.

Your class user may not always
have a form handy, and some cases

could arise where there’s no other
convenient class with which to
associate the event handler
method either. From that perspec-
tive, a standalone procedure is a
cleaner solution. Unfortunately,
providing a standalone procedure
for an event handler deviates con-
siderably from normal Delphi
practice. Therefore, it’s not an
obvious choice: convenience
versus potential confusion.

Exceptions Are The Rule
Exceptions are class instances: you
can often make a class or class
family more usable by defining
accompanying exception types.

Appropriate use of exceptions in
programs is good practice in all
manner of Delphi coding, not just
in class writing. But whereas the
developer writing general applica-
tion code can be comfortable with
raising an exception by creating an
instance of Exception, as a class
designer you shouldn’t be so
casual.

Exceptions are classes and, as
such, inheritance is an option
when declaring them. Indeed, if
you wish to declare a new excep-
tion type, you must inherit directly
or indirectly from Exception:

EMyClassError =
class(Exception);

If you wish to provide additional
information about an error condi-
tion (ie, more than just the error
description text), you may define a
class that has an appropriate con-
structor and properties. Listing 2
provides an example of just that.
The example comes from some
code I presented in a previous arti-
cle on XML. Forgive me if that
seems a bit lazy, but the fit was just
too good to ignore here. The code
takes error information returned
from a Microsoft XML parsing ser-
vice (via a COM interface), and

TMovedEvent = procedure (Sender: TObject; FromIndex, ToIndex: Longint) of object;
TTVChangingEvent = procedure (Sender: TObject; Node: TTreeNode; var AllowChange:
Boolean) of object;

TTVChangedEvent = procedure (Sender: TObject; Node: TTreeNode) of object;
TDrawCellEvent = procedure (Sender: TObject; ACol, ARow: Longint; Rect: TRect;
State: TGridDrawState) of object;

➤ Listing 1

44 The Delphi Magazine Issue 65

repackages the information as a
Delphi exception, which provides
read-only properties for the extra
bits of error information.

One other motivation exists for
supplying your own custom
exceptions, and again it’s an advan-
tage to your class user. Most of the
time code just needs to protect
itself from an ungraceful or embar-
rassing failure due to some
lower-level problem. Using a
general-purpose try..except block
will normally do the trick.

But there are times when we
need to code responses to specific
error conditions, ones that may be
recoverable, for example. We can
do this by using the on clause of the
except block. But this option may
be available only when the error
conditions are adequately delin-
eated via individual exception
types.

If nothing else, you might want to
define one general-purpose excep-
tion type for your class or class
family, just to keep your user’s
options open. Thus, for class
TWonderWidget, you could define
EWonderWidgetError. Then, any
place in the class code you want to
raise an exception, do it using that
exception type.

However, if there is an existing
Delphi exception type that’s a per-
fect fit for the problem situation, go
ahead and use it. If your class sup-
plies some kind of string to
numeric conversion method, for
example, use EConvertError to
signal an error condition. In doing
so, you will remain nicely consis-
tent with the VCL.

Your Assignment, Mr Phelps
Go with the flow and supply an
Assign method for your class.

You are probably aware that
components routinely supply an
assignment method for them-
selves or for one or more of their
properties, straightforwardly
named Assign. But Assign isn’t just
a component feature. In fact, it first
appears in the VCL hierarchy in
class TPersistent, which exists
between TObject and TComponent.

You can supply an Assign
method for your class even if it
doesn’t descend from TPersistent

➤ Listing 2
(although we’ll see in a moment
that TPersistent has a brilliant
trick up its sleeve in this regard).
But let’s assume for now that our
class is not a TPersistent. Even in
this case, the availability of an
Assign stays consistent with
conventional VCL practice.

The most obvious use of an
Assign method is where the ‘from’
object is of the same class type as
the ‘to’ object. So, for a class of
type TMyClass:

procedure Assign(
Source: TMyClass);

But there’s a more flexible way that
can be just what’s called for where
more than one type of source
object is a candidate for copying.
Define Source as type TObject.
Then, in the method code, you can
use the is operator to determine
what kind of assignment copying to
do. If the type is not one you know
how to deal with, then simply raise
an exception.

But, really, there’s a much better
way.

Don’t Dither, Be TPersistent
Consider using TPersistent as a
parent class rather than TObject to
bolster the Assign capabilities.

Now for that trick I promised to
explain earlier. I’ve written about
this before in The Delphi Magazine,
because I think it represents the
pinnacle of polymorphic elegance.
The culmination of this trick is that
you can effectively ‘teach’ a foreign
class (one for which you may not
even have source code) how to

type
EXmlDError = class(Exception);
EXmlDParseError = class(EXmlDError)
FErrorCode: Integer;
FReason: String;
FSrcText: String;
FLine: Integer;
FLinePos: Integer;

public
constructor Create(ParseError: IXMLDOMParseError);
property ErrorCode: Integer read FErrorCode;
property Reason: String read FReason;
property SrcText: String read FSrcText;
property Line: Integer read FLine;
property LinePos: Integer read FLinePos;

end;
constructor EXmlDParseError.Create(ParseError: IXMLDOMParseError);
begin
inherited Create('XML Parse Error');
FErrorCode := ParseError.errorCode;
FReason := ParseError.reason;
FSrcText := ParseError.srcText;
FLine := ParseError.line;
FLinePos := ParseError.linePos;

end;

assign an instance of your class to
an instance of its own class. Let’s
see how this is accomplished.

We begin with the virtual
method Assign in TPersistent,
which has the single parameter
Source of type TPersistent. A typi-
cal implementation will work in an
Assign method override in a fash-
ion similar to that described
above. The code will run through a
check of object types it’s prepared
to deal with. If the code can handle
a type, it will, and we’re done. If
not, we continue checking for
other types we can handle.

If we reach the end of the list of
eligible types, the code must then
call inherited Assign, and the pro-
cess repeats. If we arrive at Assign
in TPersistent, you’d think we’re at
the end of our options. But it’s not
quite time to give up and raise an
exception. Assign first calls the
AssignTo virtual method of the
source object (it’s a certainty that
AssignTo is available to call, since
the source object must be a
TPersistent descendant).

If AssignTo of the source class
knows how to copy itself to the
target class, it does so. This is pre-
cisely how we can ‘teach’ the for-
eign class about the copying
operation. The foreign class isn’t
actually performing the copy; it
only looks like it is in the source
code. Instead, we slyly insert our
services into the processing, and
we can do so courtesy of the
marvellous insight that went into
the design of TPersistent.

46 The Delphi Magazine Issue 65

The code for these two short
methods is in Listing 3. You can
see the AssignTo capability in
action in the VCL unit Con-
trols.pas, where it’s used in several
different classes.

Type Information
RTTI (runtime type information)
isn’t restricted to components; if
your class can benefit from it, use it.

One of the key enablers of
Delphi’s RAD capability is the abil-
ity of a class instance to discover
type information about its proper-
ties and even access the values of
those properties at runtime, based
on property names. This is used,
for instance, when creating forms
from internal .DFM files (which live
in the executable as Windows
resource files).

But RTTI doesn’t have to be lim-
ited to components, and it can
occasionally be extraordinarily
useful. I was recently able to put it
to very good use in a class I wrote
for an article in Issue 55 (March
2000). The class was a list class (a
container class for objects) that
that could be sorted on properties
of the contained class.

The list class could not possibly
know in advance what properties
would be present in the contained
objects. RTTI provided the magic.
Forgive me for citing my previous
work again (but it keeps me from
having to dig too hard to find
appropriate examples).

Using RTTI does involve a bit of
processing overhead, so you may
need to avoid it in performance-
critical situations. It’s also not a
universal solution. RTTI is avail-
able only for properties that are
declared as published.

That said, it also occasionally
offers a means for some inspired
innovation. The subject is much
too big to examine here. At the
moment, your best bet for learning
about it is probably Delphi In A
Nutshell by Ray Lischner (which I
recommended in an earlier
instalment as well).

RTTI isn’t the easiest thing to
learn to use (although several new
functions in Delphi 5 made life a bit
easier than in previous releases).
But you can do some marvellous

things with it. If you are serious
about mastering Delphi class
engineering, you owe it to yourself
to learn how to work with RTTI.

Message Handling
Understand the message handling
capabilities of Delphi objects; mes-
sages are one of the most flexible
tools at your disposal.

The Object Pascal language
offers a powerful option for declar-
ing methods. Methods declared as
follows are message handlers:

procedure Handle1234(
Msg: TMessage); message 1234;

Such methods are used extensively
throughout the VCL, to handle
both Windows messages and other
‘pseudo-Windows’ messages that
are synthesized by the VCL. In
practice, the message number (it
must be a constant for the com-
piler to accept it, by the way)
would be a symbolic constant, and
the method name would be the
same, but use lower case and omit
underscores. For example:

procedure CNKeyDown(
var Message: TWMKeyDown);
message CN_KEYDOWN;

A message handler must have a
single parameter, and Delphi
records are invariably used for it.
The compiler really doesn’t care
about the size or composition of
the record, but it does expect the
record to start with the message
number as a four-byte Cardinal.
The record layout that follows the
number is of concern only to
the sender and recipient (that is,

the actual code in the message
handler).

Windows messages are not
delivered into our programs in this
fashion, but Delphi runtime
facilities convert them to this
format early on. An interesting
side effect of this is that we un-
couple messaging from its depend-
ency on Window handles and
convert it to an object-based
messaging framework. This in turn
allows non-WinControl objects
(controls with no Windows
handle) to participate in
messaging.

But what does any of this have to
do with class engineering, espe-
cially if our class has nothing to do
with the Windows operating envi-
ronment? The answer is that
inter-object communication with
messages is loose-coupling Nir-
vana. One object can send a mes-
sage into another. If the recipient
knows how to handle the message
(ie, it has a message handler for
that particular message), then
that’s all well and good. If it does
not, then it’s just a non-event for
which some CPU cycles were
wasted.

Actually, that’s the major poten-
tial downside of message-based
object communication. Method
calls are much, much more effi-
cient. Responding to an incoming
message requires an object to look
through a class table to see if it
handles the message. If it finds the
message number in that table, it
calls the associated method. If not,
it continues the search in the
object’s parent class, and so on.

procedure TPersistent.Assign(Source: TPersistent);
begin
if Source <> nil then
Source.AssignTo(Self)

else
AssignError(nil);

end;
procedure TPersistent.AssignError(Source: TPersistent);
var
SourceName: string;

begin
if Source <> nil then
SourceName := Source.ClassName

else
SourceName := 'nil';

raise EConvertError.CreateResFmt(@SAssignError, [SourceName, ClassName]);
end;
procedure TPersistent.AssignTo(Dest: TPersistent);
begin
Dest.AssignError(Self);

end;

➤ Listing 3

January 2001 The Delphi Magazine 47

Of course, all of this is done by
low-level facilities and we needn’t
get involved in the fussy details. All
we need to do is provide a handler
method, or make use of an alterna-
tive. If an object does not have a
handler for a message, the mes-
sage eventually ends up being
passed to a virtual method of
TObject:

procedure DefaultHandler(
var Message); virtual;

If we wished, for example, to
handle a range of message num-
bers with the same one piece of
code, this is a way to do it. Another
possibility is that, with Default-
Handler, we are not restricted to
constant message numbers. We
can test incoming message num-
bers against variables. For exam-
ples of DefaultHandler being
overridden, once again, refer to the
Controls.pas unit in the Delphi
source.

So, we’ve a couple of ways to
process incoming messages. What
about the other side of the commu-
nication: how do we send one?
TObject is, once again, at your ser-
vice. The TObject method Dispatch
is our answer:

procedure Dispatch(
var Message); virtual;

Although Dispatch is a virtual
method, I cannot imagine why
anyone would ever need or want to
override it (so just don’t, OK?). To
send a message to an object,
simply invoke its Dispatch method
passing a record as the parameter:

SomeObject.Dispatch(MyMessage);

That’s all there is to it.
One caution is: if you do include

message handler methods in your
class, you should avoid calling
them directly. It’s not obvious, but
calls to message handler routines
are not polymorphic. They are
compiled using early binding. If
you need to invoke processing via
both messages and calls, put the
main processing code in a method
you can call, and call that method
from the message handler as well.

All The Rest
Remember that all those other
principles of good coding practice
still apply when you’re writing class
code.

I have received a number of sug-
gestions during the course of writ-
ing this series regarding additional
points to make. I’ve rejected a
number of them because, while
they involve sound advice on writ-
ing effective code, they had little or
nothing to do with class design and
coding. That was my criterion for
including a topic: it had to directly
apply to the programming of
classes.

It would have been inappropri-
ate, for example, to recommend:
‘Avoid the use of with statements;
they make debugging difficult,
invite obscure bugs, and are
deeply evil’. It doesn’t matter that
this advice is profoundly true
(which, of course, it is). It just has
nothing specifically to do with
class engineering.

Nevertheless, I think it does no
harm to offer a reminder that the
rules don’t change just because
you’re doing things in an OO fash-
ion. The fact that OO can increase
the reliability of your code doesn’t
mean you’re allowed to get sloppy
as compensation.

One item that’s invariably men-
tioned in any list of good program-
ming practices applies in spades
for class code: use of meaningful
names. I’m referring in particular
to names used for public methods
and properties.

Ease of use has to be regarded as
one of the more important metrics
of class quality. To achieve it,
meaningful method and property
names are unquestionably a
requirement. So, spend the time
it takes to get this right. Self-
documentation begins with good
names. Consider that the best
external documentation may be
that which isn’t needed in the first
place.

Closing Credits
So, we’ve reached the end at last.
When I first got the go-ahead on
this series from Our Esteemed
Editor, I was quite excited. I
thought: ‘This’ll be great. I won’t

need to constantly fret about find-
ing new topics, there will be little
research required, and the articles
will be easy to write’. I was right
about the first two, but far off the
mark about the third.

The task was certainly made
easier, however, by several indi-
viduals who contributed advice
and encouragement. Thanks to
Dave Heard, William Tai and Gert
Kello for their constructive criti-
cism. Very special thanks to Bob
Linfield for making sure I didn’t
talk too fast during the tricky bits.
And special thanks, also, to Will
Signal, who can spot a grammatical
error at 50 paces, for finding...
ahem... one or two.

Lastly, there’s one final person
to thank: our old friend Anony-
mous, the author of countless
gems of language abuse and object
model misuse. We needn’t worry
about hurt feelings here, because
Anonymous rarely bothers to read
software books or magazines.
Encountering these stinkers has
been a source of continual frustra-
tion throughout my Delphi career,
but it has also been the inspiration
for most of the guidelines pre-
sented in this series. At the end of
the day, that suggests one final
guideline: when life hands you
lemons, publish!

David Baer is Senior Architectural
Engineer at StarMine in San
Francisco. Just because he loathes
‘with’ statements doesn’t mean
he’s not a ‘with it’ kind of guy.
You can contact him at
dbaer@starmine.com

	The Big Event
	Special Events
	Exceptions Are The Rule
	Your Assignment, Mr Phelps
	Don’t Dither, Be TPersistent
	Type Information
	Message Handling
	All The Rest
	Closing Credits

